Sequence-specific targeting and covalent modification of human genomic DNA.

نویسندگان

  • E S Belousov
  • I A Afonina
  • M A Podyminogin
  • H B Gamper
  • M W Reed
  • R M Wydro
  • R B Meyer
چکیده

We compare two techniques which enable selective, nucleotide-specific covalent modification of human genomic DNA, as assayed by quantitative ligation- mediated PCR. In the first, a purine motif triplex-forming oligonucleotide with a terminally appended chlorambucil was shown to label a target guanine residue adjacent to its binding site in 80% efficiency at 0.5 microM. Efficiency was higher in the presence of the triplex-stabilizing intercalator coralyne. In the second method, an oligonucleotide targeting a site containing all four bases and bearing chlorambucil on an interior base was shown to efficiently react with a specific nucleotide in the target sequence. The targeted sequence in these cases was in the DQbeta1*0302 allele of the MHC II locus.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sequence-specific covalent labelling of DNA.

Sequence-specific DNA modification is of significance for applications in bio- and nano-technology, medical diagnostics and fundamental life sciences research. Preferentially, labelling should be performed covalently, which avoids doubts about label dissociation from the DNA under various conditions. Several methods to label native DNA have been developed in the last two decades. Triple-helix-f...

متن کامل

Identification of Human Chromosome Segments that Have High Homology with Rat Genomic DNA

This study was conducted to determine the location of DNA segment with homology to the rat conserved genomic DNA in human chromosomes. The labeled rat genomic DNA was hybridized with normal human (male) metaphases. The study of 74 metaphases after fluorescence in situ hybridization showed 371 twin-spot signals on human chromosomes. Statistical analysis indicated that the specific accumulation o...

متن کامل

Covalent Modification of Bacteriophage T4 DNA Inhibits CRISPR-Cas9

UNLABELLED The genomic DNAs of tailed bacteriophages are commonly modified by the attachment of chemical groups. Some forms of DNA modification are known to protect phage DNA from cleavage by restriction enzymes, but others are of unknown function. Recently, the CRISPR-Cas nuclease complexes were shown to mediate bacterial adaptive immunity by RNA-guided target recognition, raising the question...

متن کامل

DNA replicons for plant genome engineering.

Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator-like effec...

متن کامل

DNA Replicons for Plant Genome EngineeringW

Sequence-specific nucleases enable facile editing of higher eukaryotic genomic DNA; however, targeted modification of plant genomes remains challenging due to ineffective methods for delivering reagents for genome engineering to plant cells. Here, we use geminivirus-based replicons for transient expression of sequence-specific nucleases (zinc-finger nucleases, transcription activator– like effe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 17  شماره 

صفحات  -

تاریخ انتشار 1997